39 research outputs found

    Non-Markovian Dynamics in Continuous Variable Quantum Systems

    Get PDF
    The present manuscript represents the completion of a research path carried forward during my doctoral studies in the University of Turku. It contains information regarding my scientific contribution to the field of open quantum systems, accomplished in collaboration with other scientists. The main subject investigated in the thesis is the non-Markovian dynamics of open quantum systems with focus on continuous variable quantum channels, e.g. quantum Brownian motion models. Non-Markovianity is here interpreted as a manifestation of the existence of a flow of information exchanged by the system and environment during the dynamical evolution. While in Markovian systems the flow is unidirectional, i.e. from the system to the environment, in non-Markovian systems there are time windows in which the flow is reversed and the quantum state of the system may regain coherence and correlations previously lost. Signatures of a non-Markovian behavior have been studied in connection with the dynamics of quantum correlations like entanglement or quantum discord. Moreover, in the attempt to recognisee non-Markovianity as a resource for quantum technologies, it is proposed, for the first time, to consider its effects in practical quantum key distribution protocols. It has been proven that security of coherent state protocols can be enhanced using non-Markovian properties of the transmission channels. The thesis is divided in two parts: in the first part I introduce the reader to the world of continuous variable open quantum systems and non-Markovian dynamics. The second part instead consists of a collection of five publications inherent to the topic.Siirretty Doriast

    Entanglement dynamics for two harmonic oscillators coupled to independent environments

    Full text link
    We study the entanglement evolution between two harmonic oscillators having different free frequencies each leaking into an independent bath. We use an exact solution valid in the weak coupling limit and in the short time non-Markovian regime. The reservoirs are identical and characterized by an Ohmic spectral distribution with Lorents-Drude cut-off. This work is an extension of the case reported in [Phys. Rev. A 80, 062324 (2009)] where the oscillators have the same free frequency.Comment: 8 pages, 3 figures, submitted to Physica Script

    Most probable paths in temporal weighted networks: An application to ocean transport

    Get PDF
    We consider paths in weighted and directed temporal networks, introducing tools to compute sets of paths of high probability. We quantify the relative importance of the most probable path between two nodes with respect to the whole set of paths, and to a subset of highly probable paths which incorporate most of the connection probability. These concepts are used to provide alternative definitions of betweenness centrality. We apply our formalism to a transport network describing surface flow in the Mediterranean sea. Despite the full transport dynamics is described by a very large number of paths we find that, for realistic time scales, only a very small subset of high probability paths (or even a single most probable one) is enough to characterize global connectivity properties of the network

    The geometric approach to quantum correlations: Computability versus reliability

    Full text link
    We propose a modified metric based on the Hilbert-Schmidt norm and adopt it to define a rescaled version of the geometric measure of quantum discord. Such a measure is found not to suffer from the pathological dependence on state purity. Although the employed metric is still noncontractive under quantum operations, we show that the resulting indicator of quantum correlations is in agreement with other bona fide discord measures in a number of physical examples. We present a critical assessment of the requirements of reliability versus computability when approaching the task of quantifying, or measuring, general quantum correlations in a bipartite state.Comment: 14 pages, 5 figures; presentation improved; to appear in J. Phys.

    Continuous-variable quantum key distribution in non-Markovian channels

    Get PDF
    We address continuous-variable quantum key distribution (QKD) in non-Markovian lossy channels and show how the non-Markovian features may be exploited to enhance security and/or to detect the presence and the position of an eavesdropper along the transmission line. In particular, we suggest a coherent-state QKD protocol which is secure against Gaussian individual attacks based on optimal 1 ->2 asymmetric cloning machines for arbitrarily low values of the overall transmission line. The scheme relies on specific non-Markovian properties, and cannot be implemented in ordinary Markovian channels characterized by uniform losses. Our results give a clear indication of the potential impact of non-Markovian effects in QKD

    Dynamical Casimir-Polder potentials in non-adiabatic conditions

    Full text link
    In this paper we review different aspects of the dynamical Casimir- Polder potential between a neutral atom and a perfectly conducting plate under nonequilibrium conditions. In order to calculate the time evolution of the atom-wall Casimir-Polder potential, we solve the Heisenberg equations describing the dynamics of the coupled system using an iterative technique. Different nonequilibrium initial states are considered, such as bare and partially dressed states. The partially dressed states considered are obtained by a sudden change of a physical parameter of the atom or of its position relative to the conducting plate. Experimental feasibility of detecting the considered dynamical effects is also discussed.Comment: 6 pages; Special Issue: 20th Central European Workshop on Quantum Optics - Stockholm - June 201

    Dominant transport pathways in an atmospheric blocking event

    Get PDF
    A Lagrangian flow network is constructed for the atmospheric blocking of eastern Europe and western Russia in summer 2010. We compute the most probable paths followed by fluid particles which reveal the {\it Omega}-block skeleton of the event. A hierarchy of sets of highly probable paths is introduced to describe transport pathways when the most probable path alone is not representative enough. These sets of paths have the shape of narrow coherent tubes flowing close to the most probable one. Thus, even when the most probable path is not very significant in terms of its probability, it still identifies the geometry of the transport pathways.Comment: Appendix added with path calculations for a simple kinematic model flo

    Quantifying non-Markovianity of continuous-variable Gaussian dynamical maps

    Get PDF
    We introduce a non-Markovianity measure for continuous-variable open quantum systems based on the idea put forward in H.-P. Breuer, that is, by quantifying the flow of information from the environment back to the open system. Instead of the trace distance we use here the fidelity to assess distinguishability of quantum states. We employ our measure to evaluate non-Markovianity of two paradigmatic Gaussian channels: the purely damping channel and the quantum Brownian motion channel with Ohmic environment. We consider different classes of Gaussian states and look for pairs of states maximizing the backflow of information. For coherent states we find simple analytical solutions, whereas for squeezed states we provide both exact numerical and approximate analytical solutions in the weak coupling limit
    corecore